Artificial Intelligence Based Semi-automated Screening of Cervical Cancer Using a Primary Training Database

نویسنده

  • Abid Sarwar
چکیده

Objective: The primary objective of this research work is to develop a novel benchmark database of digitized and calibrated, cervical cells obtained from slides of Papanicolaou smear test, which is done for screening of cervical cancer. This database can serve as a potential tool for designing, developing, training, testing and validating various Artificial intelligence based systems for prognosis of cervical cancer by characterization and classification of Papanicolaou smear images. The database can also be used by other researchers for comparative analysis of working efficiencies of various machine learning and image processing algorithms. The database can be obtained by sending a request to the corresponding author. Besides developing a rich machine learning database we have also presented a novel artificial intelligence based hybrid ensemble technique for efficient screening of cervical cancer by automated analysis of Papanicolaou smear images. Methodology: The correct and timely diagnosis of cervical cancer is one of the major problems in the medical world. From the literature it has been found that different pattern recognition techniques can help them to improve in this domain. Papanicolaou smear (also referred to as Pap smear) is a microscopic examination of samples of human cells scraped from the lower, narrow part of the uterus, called cervix. A sample of cells after being stained by using Papanicolaou method is analyzed under microscope for the presence of any unusual developments indicating any precancerous and potentially precancerous developments. Abnormal findings, if observed are subjected to further precise diagnostic subroutines. Examining the cell images for abnormalities in the cervix provides grounds for provision of prompt action and thus reducing incidence and deaths from cervical cancer. It is the most popular technique used for screening of cervical cancer. Pap smear test, if done with a regular screening programs and proper follow-up, can reduce cervical cancer mortality by up to 80% . The contribution of this paper is that we have created a rich machine learning database of quantitatively profiled and calibrated cervical cells obtained from Papsmear test slides. The database so created consists of data of about 200 clinical cases (8091 cervical cells), which have been obtained from multiple health care centers, so as to ensure diversity in data. The slides were processed using a multi-headed digital microscope and images of cervical cells were obtained, which were passed through various data preprocessing subroutines. After preprocessing the cells were morphologically profiled and scaled to obtain separate quantitative measurements of various features of cytoplasm and nucleus respectively. The cells in the database were carefully classified in different corresponding classes according to latest 2001-Bethesda system of classification, by technicians. In addition to this, we have also pioneered to apply a novel hybrid ensemble system to this database in order to evaluate the effectiveness of both novel database and novel hybrid ensemble technique to screen cervical cancer by categorization of Pap smear data. The paper also presents a comparative analysis of multiple artificial intelligence based classification algorithms for prognosis of cervical cancer. Results: For evaluating the effectiveness and correctness of the digital database prepared in this work, authors implemented this database for training, testing and validating fifteen different artificial intelligence based machine learning algorithms. All algorithms trained with this database presented commendable efficiency in screening of cervical cancer. For two-class problem all the algorithms trained with the digital database showed the efficiencies in range of about 93-95% while as in case of multi class problem algorithms expressed the efficiencies in the range of about 69-78%. The results indicate that the novel digital database prepared in this work can be efficiently used for developing new machine learning based techniques for automated screening of cervical cancer. The results also indicate that hybrid ensemble technique is an efficient method for classification of pap-smear images and hence can be effectively used for diagnosis of cervical cancer. Among all the algorithms implemented, the hybrid ensemble approach outperformed and expressed an efficiency of about 98% for 2-class problem and about 86% for 7-class problem. The results when compared with the all the standalone classifiers were significantly better for both twoclass and multi-class problems. Citation: Sarwar A (2016) Artificial Intelligence Based Semi-automated Screening of Cervical Cancer Using a Primary Training Database. Cervical Cancer 1: 105. doi: 10.4172/2475-3173.1000105

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

Exploring the Impact of Individual Factors in Taking Cervical Cancer Screening: A Content Analysis

Background: Cervical cancer remains the leading cause of cancer death among women in developing country. In Iraqi Kurdistan Region, few women undergo screening and the incidence of cervical cancer is on the increase as is the case in most developing countries. The purpose of this study was to explore women’s individual factors affecting the performance of the cervical cancer screening in ...

متن کامل

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

بررسی موانع و عوامل انگیزه‌ساز مؤثر بر مراجعه زنان برای انجام آزمایش غربالگری پاپ‌اسمیر

Background & Aim: Although cervical cancer has high prevalence, few qualitative studies have been carried out to reflect the perceptions of women on the influential factors that affect cervical cancer screening in Iran. The aim of this study was to explore a culturally-based experience of Karaji women regarding the barriers to and motivating factors for Pap smear screening test among Karadj wom...

متن کامل

Pnm-17: Cost Effectiveness of Human Papillomavirus Testing in Cervical Cancer Diagnosis

Background: Epidemiological studies are shown robust association between human papillomavirus (HPV) and cervical cancer. From 1990 HPV was known as a necessary but insufficient cause of cervical invasive cancer. The purpose of this study was to evaluate the cost effectiveness of HPV test in cervical cancer screening. Materials and Methods: This is a systematic review article; the newest scienti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016